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Introduction and Preliminaries 

In past few decades study of fixed point theory is one of the most interesting fields to researchers. In this 

direction Banach contraction mapping principle is one of the most interesting results which states as follows:- 

 Let  (𝑋, 𝑑) be a complete metric space and 𝑇 ∶ 𝑋 → 𝑋 . Then T is said to be contraction mapping if for all 

𝑥, 𝑦 ∈ 𝑋, 

     𝑑(𝑇𝑥, 𝑇𝑦) ≤  𝑘𝑑(𝑥, 𝑦)        (1.1) 

 𝑤ℎ𝑒𝑟𝑒  0 <  𝑘 <  1 . 

It is easy to see that the contraction mapping principle, any mapping T satisfying (1.1) will have a unique 

fixed point. 

Number of mathematicians generalized the above principle.  𝑩𝒐𝒚𝒅 𝒂𝒏𝒅 𝑾𝒐𝒏𝒈[𝟏]  proved that the 

constant k in (1.1) can be replaced by the use of upper semi continuous function. 𝑺𝒖𝒛𝒖𝒌𝒊[𝟐] has proved a 

generalization of the same principle which characterizes metric completeness. The contraction principle has also 

been extended to probabilistic metric space [5]. 

One of the most interesting generalization was presented by  𝑲𝒉𝒂𝒏 𝒆𝒕 𝒂𝒍.[3] which addressed a new 

category of fixed point problems by using control function which they called an altering distance function. In fact 

𝑲𝒉𝒂𝒏 𝒆𝒕 𝒂𝒍.[3] presented following definition of altering distance function. 
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Definition 1.1:  A function 𝜓: [0, ∞) →  [0, ∞) is called an altering distance function if the following properties are 

satisfied:  

i. 𝜓(0) = 0 

ii. 𝜓 is continuous and monotonically non decreasing.  

In 𝑲𝒉𝒂𝒏 𝒆𝒕 𝒂𝒍.[3] proved the following fixed point result. 

Theorem 1.2: Let (𝑋, 𝑑) is a complete metric space, let 𝜓 be an altering distance function, and let 𝑇: 𝑋 → 𝑋 be a 

self-mapping which satisfies the following inequality: 

    𝜓(𝑑(𝑇𝑥, 𝑇𝑦))  ≤ 𝑐𝜓(𝑑(𝑥, 𝑦))        (1.2) 

for all 𝑥, 𝑦 ∈ 𝑋 and for some 0 < 𝑐 < 1. Then 𝑇 has a unique fixed point.  

After the publication of 𝑲𝒉𝒂𝒏 𝒆𝒕 𝒂𝒍.[3] work there is lot of work done by using this concept. Some of 

works utilizing the concept of altering distance function are noted in [𝟒 − 𝟏𝟒].  In [𝟗], 2-variable and in [𝟏𝟎] 3- 

variable altering distance functions have been introduced as generalizations of the concept of altering distance 

function. It has also been extended in the context if multivalued [𝟏𝟏] and fuzzy mappings [𝟏𝟐]. The concept of 

altering distance function has also been introduced in Menger spaces [𝟏𝟑].  

𝑨𝒍𝒃𝒆𝒓 𝒂𝒏𝒅 𝑮𝒖𝒆𝒓𝒓𝒆 −  𝑫𝒆𝒍𝒂𝒃𝒓𝒊𝒆𝒓𝒆[𝟓]    gave an another generalization of the contraction principle in 

Hilbert spaces. Rhoades [17] has shown that the result which Alber and Guerre- Delabriere have been proved 

in [𝟓] is also valid in complete metric spaces.  𝑹𝒉𝒐𝒂𝒅𝒆𝒔[𝟏𝟒]  gave the following definition of contraction 

principle,  

Definition 1.3: A mapping  𝑇: 𝑋 → 𝑋, where (𝑋, 𝑑) is a metric space, is said to be weakly contractive if  

     𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑑(𝑥, 𝑦) −  𝜙(𝑑𝑥, 𝑦))       (1.3) 

where 𝑥, 𝑦 ∈ 𝑋  and 𝜙: [0, ∞) →  [0, ∞) is a continuous and nondecreasing function such that 𝜙(𝑡) = 0 if and 

only if   𝑡 = 0. 

It should be noted that if we take  𝜙(𝑡) = 𝑘𝑡 where   0 < 𝑘 < 1, in (1.3) then we get (1.1). 

Also following theorem is the main results of 𝑹𝒉𝒐𝒂𝒅𝒆𝒔[𝟏𝟒]. 

Theorem  1.4:  If 𝑇 ∶ 𝑋 → 𝑋  is a weakly contractive mapping, where (𝑋, 𝑑) is a complete metric space, then T 

has a unique fixed point. 

In fact, Alber and Guerre- Delabriere assumed an additional condition on 𝜙 which is lim
𝑡→ ∞

𝜙(𝑡) = ∞. But 

𝑹𝒉𝒐𝒂𝒅𝒆𝒔[𝟏𝟒] obtained the result noted in Theorem 1.4 without using this particular assumption. 

It may be observed that though the function 𝜙  has been defined in the same way as the altering 

distance function, the way it has been used in Theorem 1.4  is completely different from the use of altering 

distance function. 

The purpose of this paper is to introduce  a new type contraction principle which  is  a generalization of 

Banach contraction principle which includes the generalizations noted in Theorem 1.2 and 1.4 .  
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Main Results 

Our main investigated result of this paper is as follows , 

Theorem 2.1: Let (𝑋, 𝑑 )  be a complete metric space and let  𝑇: 𝑋 → 𝑋 be a self mapping satisfying the 

inequality  

𝜓(𝑑(𝑇𝑥, 𝑇𝑦))  ≤ 𝜓 ((𝑑(𝑥, 𝑦). 𝑑(𝑥, 𝑇𝑥). 𝑑(𝑦, 𝑇𝑦))
1

3) – 𝜙 ((𝑑(𝑥, 𝑦). 𝑑(𝑥, 𝑇𝑥). 𝑑(𝑦, 𝑇𝑦))
1

3)    (2.1(𝑎)) 

where  𝜓, 𝜙 ∶  [0, ∞) →  [0, ∞) are both continuous and monotone nondecreasing functions with 𝜓(𝑡) = 0 =

 𝜙(𝑡) if and only if  𝑡 = 0.  Then T has a unique fixed point. 

Proof :  For any 𝑥0 ∈ 𝑋, we construct the sequence {𝑥𝑛} by 𝑥𝑛 = 𝑇𝑥𝑛−1, 𝑛 = 1,2, … ..  

Substituting  𝑥 = 𝑥𝑛−1 𝑎𝑛𝑑 𝑦 =  𝑥𝑛    in (2.1(a)), we obtain 

  𝜓(𝑑(𝑇𝑥𝑛−1, 𝑇𝑥𝑛))  ≤ 𝜓 ((𝑑(𝑥𝑛−1, 𝑥𝑛). 𝑑(𝑥𝑛−1, 𝑇𝑥𝑛−1). 𝑑(𝑥𝑛, 𝑇𝑥𝑛))
1

3)   

     – 𝜙 ((𝑑(𝑥𝑛−1, 𝑥𝑛). 𝑑(𝑥𝑛−1, 𝑇𝑥𝑛−1). 𝑑(𝑥𝑛, 𝑇𝑥𝑛))
1

3)    

  𝜓(𝑑(𝑥𝑛, 𝑥𝑛+1))  ≤ 𝜓 ((𝑑(𝑥𝑛−1, 𝑥𝑛). 𝑑(𝑥𝑛−1, 𝑥𝑛). 𝑑(𝑥𝑛, 𝑥𝑛+1))
1

3)   

 – 𝜙 ((𝑑(𝑥𝑛−1, 𝑥𝑛). 𝑑(𝑥𝑛−1, 𝑥𝑛). 𝑑(𝑥𝑛, 𝑥𝑛+1))
1

3)    (2.2) 

Using the monotone property of  𝜓 − function we have 

 𝑑2(𝑥𝑛 , 𝑥𝑛+1) ≤  𝑑2(𝑥𝑛−1, 𝑥𝑛)   

Which implies  

     𝑑(𝑥𝑛, 𝑥𝑛+1) ≤  𝑑(𝑥𝑛−1, 𝑥𝑛)       (2.3) 

It follows that the sequence {𝑑(𝑥𝑛, 𝑥𝑛+1)} is monotone decreasing and consequently there exists 𝑟 ≥ 0  such 

that 

     𝑑(𝑥𝑛, 𝑥𝑛+1) → 𝑟  𝑎𝑠  𝑛 → ∞.        

 (2.4) 

Letting 𝑛 → ∞  in (2.2)  we obtain  

     𝜓(𝑟)  ≤ 𝜓(𝑟)  – 𝜙(𝑟) ,        

 (2.5)  

This is a contraction unless   𝑟 = 0.   

Hence  

     𝑑(𝑥𝑛, 𝑥𝑛+1) → 0  𝑎𝑠  𝑛 → ∞.         

(2.6) 

We next prove that {𝑥𝑛}  is a Cauchy sequence. If possible, let {𝑥𝑛} be not a Cauchy sequence. Then there exists 

𝜖 > 0  for which we can fixed subsequences {𝑥𝑚(𝑘)} and {𝑥𝑛(𝑘)} of {𝑥𝑛} with 𝑛(𝑘) >  𝑚(𝑘) > 𝑘  such that 
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     𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)) ≥ 𝜖.        (2.7)   

Further, corresponding to 𝑚(𝑘),  we can choose 𝑛(𝑘) is such a way that if is the smallest integer with 𝑛(𝑘) >

𝑚(𝑘)  and satisfying (2.7).  Then  

     𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)−1) < 𝜖.       (2.8) 

Then we have 

  𝜖 ≤  𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)) ≤  𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)−1) +  𝑑(𝑥𝑛(𝑘)−1, 𝑥𝑛(𝑘)) <   𝜖 +  𝑑(𝑥𝑛(𝑘)−1, 𝑥𝑛(𝑘))   

(2.9) 

Letting 𝑘 → ∞  and using (2.6), 

 lim
𝑘→ ∞

𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘))  = 𝜖.          

(2.10) 

Again, 

  𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)) ≤  𝑑(𝑥𝑚(𝑘), 𝑥𝑚(𝑘)−1) +  𝑑(𝑥𝑚(𝑘)−1, 𝑥𝑛(𝑘)−1) +  𝑑(𝑥𝑛(𝑘)−1, 𝑥𝑛(𝑘))    

  𝑑(𝑥𝑚(𝑘)−1, 𝑥𝑛(𝑘)−1)  ≤  𝑑(𝑥𝑛(𝑘)−1, 𝑥𝑛(𝑘)) +  𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)) +  𝑑(𝑥𝑚(𝑘), 𝑥𝑚(𝑘)−1)   (2.11) 

Letting 𝑘 → ∞  in the above two inequalities and using (2.6) and (2.10), we get 

  lim
𝑘→ ∞

𝑑(𝑥𝑚(𝑘)−1, 𝑥𝑛(𝑘)−1)  = 𝜖     (2.12) 

Setting 𝑥 =  𝑥𝑚(𝑘)−1   𝑎𝑛𝑑  𝑦 =   𝑥𝑛(𝑘)−1   in (2.1(a))  and using (2.7) , we obtain  

   𝜓(𝜖) ≤  𝜓 (𝑑(𝑇𝑥𝑚(𝑘)−1, 𝑇𝑥𝑛(𝑘)−1))   

    ≤ 𝜓 ((𝑑(𝑥𝑚(𝑘)−1, 𝑥𝑛(𝑘)−1). 𝑑(𝑥𝑚(𝑘)−1, 𝑇𝑥𝑚(𝑘)−1). 𝑑(𝑥𝑛(𝑘)−1, 𝑇𝑥𝑛(𝑘)−1))

1

3
)   

    – 𝜙 ((𝑑(𝑥𝑚(𝑘)−1, 𝑥𝑛(𝑘)−1). 𝑑(𝑥𝑚(𝑘)−1, 𝑇𝑥𝑚(𝑘)−1). 𝑑(𝑥𝑛(𝑘)−1, 𝑇𝑥𝑛(𝑘)−1))

1

3
)      

 (2.13)  

Letting 𝑘 → ∞,  and using (2.10) and (2.12), we obtain 

     𝜓(𝜖) ≤ 𝜓(𝜖) −  𝜙(𝜖)        

 (2.14) 

which is a contraction  if   𝜖 > 0. 

This shows that {𝑥𝑛} is a Cauchy sequence and hence is convergent in the complete metric space X.  Let  

     𝑥𝑛 → 𝑧  𝑎𝑠  𝑛 → ∞       

 (2.15) 

Substituting  𝑥 = 𝑥𝑛−1  and  𝑦 = 𝑧 in (2.1(a)), we obtain 

    𝜓 (𝑑(𝑇𝑥𝑛−1, 𝑇𝑧)) ≤ 𝜓 ((𝑑(𝑥𝑛−1, 𝑧). 𝑑(𝑥𝑛−1, 𝑇𝑥𝑛−1). 𝑑(𝑧, 𝑇𝑧))
1

3)  
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      − 𝜙 ((𝑑(𝑥𝑛−1, 𝑧). 𝑑(𝑥𝑛−1, 𝑇𝑥𝑛−1). 𝑑(𝑧, 𝑇𝑧))
1

3)  (2.16)  

Letting 𝑛 → ∞  using (2.15)   and continuity of 𝜙 𝑎𝑛𝑑  𝜓  we have 

     𝜓(𝑑(𝑧, 𝑇𝑧)) ≤  𝜓(0) −  𝜙(0)  = 0  

Which implies 𝜓(𝑑(𝑧, 𝑇𝑧)) = 0, that is  

     𝑑(𝑧, 𝑇𝑧) = 0  or   𝑧 = 𝑇𝑧. 

To prove the uniqueness of the fixed point, let us suppose that 𝑧1𝑎𝑛𝑑 𝑧2 are two fixed points of T.  Putting 𝑥 =

𝑧1 and 𝑦 = 𝑧2  in (2.1(a)) 

  𝜓 (𝑑(𝑇𝑧1, 𝑇𝑧2)) ≤ 𝜓 ((𝑑(𝑧1, 𝑧2). 𝑑(𝑧1, 𝑇𝑧1). 𝑑(𝑧2, 𝑇𝑧2))
1

3) −

 𝜙 ((𝑑(𝑧1, 𝑧2). 𝑑(𝑧1, 𝑇𝑧1). 𝑑(𝑧2, 𝑇𝑧2))
1

3)  

  𝜓 (𝑑(𝑇𝑧1, 𝑇𝑧2))  ≤ 0  

Or equivalently 𝑑(𝑧1, 𝑧2) = 0  that is   𝑧1 =   𝑧2. This proves that the uniqueness of the fixed point. 

 Corollary  2.2: Let (𝑋, 𝑑 )  be a complete metric space and let  𝑇: 𝑋 → 𝑋 be a self mapping satisfying the 

inequality  

   𝜓(𝑑(𝑇𝑥, 𝑇𝑦))  ≤ 𝑘 𝜓 ((𝑑(𝑥, 𝑦). 𝑑(𝑥, 𝑇𝑥). 𝑑(𝑦, 𝑇𝑦))
1

3)       (2.2(𝑎))  

where  𝜓 ∶  [0, ∞) →  [0, ∞) is continuous and monotone nondecreasing functions with 𝜓(𝑡) = 0 if and only if 

 𝑡 = 0 and  0 < 𝑘 < 1.  Which shows that T has unique fixed point in  X. 

Proof :  If we particularly take 𝜙(𝑡) = (1 − 𝑘)𝜓(𝑡)  ∀ 𝑡 > 0  𝑤ℎ𝑒𝑟𝑒 0 < 𝑘 < 1 ,  in Theorem 2.1(a) then we 

obtain the result. 

Corollary  2.3: Let (𝑋, 𝑑 )  be a complete metric space and let  𝑇: 𝑋 → 𝑋 be a self mapping satisfying the 

inequality  

    𝑑(𝑇𝑥, 𝑇𝑦)  ≤ 𝑘 (𝑑(𝑥, 𝑦). 𝑑(𝑥, 𝑇𝑥). 𝑑(𝑦, 𝑇𝑦))
1

3       (2.3(𝑎))  

where  0 < 𝑘 < 1.    Then T has a unique fixed point. 

Proof :  If we particularly take 𝜓(𝑡) = 𝑡  ∀ 𝑡 > 0   ,  in Corollary 2.2 then we obtain the result. 

Now we give another fixed point theorem satisfying rational contractive condition. 

Theorem 2.4: Let (𝑋, 𝑑 )  be a complete metric space and let  𝑇: 𝑋 → 𝑋 be a self mapping satisfying the 

inequality  

    𝜓(𝑑(𝑇𝑥, 𝑇𝑦))  ≤ 𝜓 (
𝑑2(𝑥,𝑇𝑥)+ 𝑑2(𝑦,𝑇𝑦)

1+ 𝑑(𝑥,𝑇𝑥) + 𝑑(𝑦,𝑇𝑦)
) – 𝜙 (

𝑑2(𝑥,𝑇𝑥)+ 𝑑2(𝑦,𝑇𝑦)

1+ 𝑑(𝑥,𝑇𝑥) + 𝑑(𝑦,𝑇𝑦)
)   (2.4(𝑎))  

where  𝜓, 𝜙 ∶  [0, ∞) →  [0, ∞) are both continuous and monotone nondecreasing functions with 𝜓(𝑡) < 𝑘𝑡  for  

0 < 𝑘 < 1 and 𝜓(𝑡) = 0 =  𝜙(𝑡) if and only if  𝑡 = 0.  Then T has a unique fixed point. 

Proof :  For any 𝑥0 ∈ 𝑋, we construct the sequence {𝑥𝑛} by 𝑥𝑛 = 𝑇𝑥𝑛−1, 𝑛 = 1,2, … ..  
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Substituting  𝑥 = 𝑥𝑛−1 𝑎𝑛𝑑 𝑦 =  𝑥𝑛    in (2.4(a)), we obtain 

   𝜓(𝑑(𝑇𝑥𝑛−1, 𝑇𝑥𝑛))  ≤ 𝜓 (
𝑑2(𝑥𝑛−1,𝑇𝑥𝑛−1)+𝑑2(𝑥𝑛,𝑇𝑥𝑛)

1+𝑑(𝑥𝑛−1,𝑇𝑥𝑛−1)+𝑑(𝑥𝑛,𝑇𝑥𝑛)
) – 𝜙 (

𝑑2(𝑥𝑛−1,𝑇𝑥𝑛−1)+𝑑2(𝑥𝑛,𝑇𝑥𝑛)

1+𝑑(𝑥𝑛−1,𝑇𝑥𝑛−1)+𝑑(𝑥𝑛,𝑇𝑥𝑛)
)    

   𝜓(𝑑(𝑥𝑛, 𝑥𝑛+1))   ≤ 𝜓 (
𝑑2(𝑥𝑛−1,𝑥𝑛)+𝑑2(𝑥𝑛,𝑥𝑛+1)

1+𝑑(𝑥𝑛−1,𝑥𝑛)+𝑑(𝑥𝑛,𝑥𝑛+1)
) – 𝜙 (

𝑑2(𝑥𝑛−1,𝑥𝑛)+𝑑2(𝑥𝑛,𝑥𝑛+1)

1+𝑑(𝑥𝑛−1,𝑥𝑛)+𝑑(𝑥𝑛,𝑥𝑛+1)
)  (2.16) 

Using the monotone property of  𝜓 − function we have 

 𝑑(𝑥𝑛, 𝑥𝑛+1) ≤
𝑘

1−𝑘
 𝑑(𝑥𝑛−1, 𝑥𝑛)     (2.17) 

Similarly we have 

     𝑑(𝑥𝑛−1, 𝑥𝑛) ≤
𝑘

1−𝑘
 𝑑(𝑥𝑛−1, 𝑥𝑛−2)     (2.18) 

Processing the same way we have  

     𝑑(𝑥𝑛, 𝑥𝑛+1) ≤
𝑘𝑛

(1−𝑘)𝑛  𝑑(𝑥0, 𝑥1)   

It follows that the sequence {𝑑(𝑥𝑛, 𝑥𝑛+1)} is monotone decreasing and consequently there exists 𝑟 ≥ 0  such 

that 

     𝑑(𝑥𝑛, 𝑥𝑛+1) → 𝑟  𝑎𝑠  𝑛 → ∞.       (2.19) 

Letting 𝑛 → ∞  in (2.16)  we obtain  

     𝜓(𝑟)  ≤ 𝜓(𝑟)  – 𝜙(𝑟) ,       (2.20)  

This is a contraction unless   𝑟 = 0.   

Hence  

     𝑑(𝑥𝑛, 𝑥𝑛+1) → 0  𝑎𝑠  𝑛 → ∞.       (2.21) 

We next prove that {𝑥𝑛}  is a Cauchy sequence. If possible, let {𝑥𝑛} be not a Cauchy sequence. Then there exists 

𝜖 > 0  for which we can fixed subsequences {𝑥𝑚(𝑘)} and {𝑥𝑛(𝑘)} of {𝑥𝑛} with 𝑛(𝑘) >  𝑚(𝑘) > 𝑘  such that 

     𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)) ≥ 𝜖.        (2.22)   

Further, corresponding to 𝑚(𝑘),  we can choose 𝑛(𝑘) is such a way that if is the smallest integer with 𝑛(𝑘) >

𝑚(𝑘)  and satisfying (2.22).  Then  

     𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)−1) < 𝜖.       (2.23) 

Then we hgave 

 𝜖 ≤  𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)) ≤  𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)−1) +  𝑑(𝑥𝑛(𝑘)−1, 𝑥𝑛(𝑘)) <   𝜖 +  𝑑(𝑥𝑛(𝑘)−1, 𝑥𝑛(𝑘))  

 (2.24) 

Letting 𝑘 → ∞  and using (2.21), 

  lim
𝑘→ ∞

𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘))  = 𝜖.         (2.25) 

Again, 
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 𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)) ≤  𝑑(𝑥𝑚(𝑘), 𝑥𝑚(𝑘)−1) +  𝑑(𝑥𝑚(𝑘)−1, 𝑥𝑛(𝑘)−1) +  𝑑(𝑥𝑛(𝑘)−1, 𝑥𝑛(𝑘))    

 𝑑(𝑥𝑚(𝑘)−1, 𝑥𝑛(𝑘)−1)  ≤  𝑑(𝑥𝑛(𝑘)−1, 𝑥𝑛(𝑘)) +  𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)) +  𝑑(𝑥𝑚(𝑘), 𝑥𝑚(𝑘)−1)    (2.26) 

Letting 𝑘 → ∞  in the above two inequalities and using (2.22) and (2.25), we get 

 lim
𝑘→ ∞

𝑑(𝑥𝑚(𝑘)−1, 𝑥𝑛(𝑘)−1)  = 𝜖     (2.27) 

Setting 𝑥 =  𝑥𝑚(𝑘)−1   𝑎𝑛𝑑  𝑦 =   𝑥𝑛(𝑘)−1   in (2.4(a))  and using (2.23) , we obtain  

  𝜓(𝜖) ≤  𝜓 (𝑑(𝑇𝑥𝑚(𝑘)−1, 𝑇𝑥𝑛(𝑘)−1))   

  ≤ 𝜓 (
𝑑2(𝑥𝑚(𝑘)−1,𝑇𝑥𝑚(𝑘)−1)+𝑑2(𝑥𝑛(𝑘)−1,𝑇𝑥𝑛(𝑘)−1)

1+𝑑(𝑥𝑚(𝑘)−1,𝑇𝑥𝑚(𝑘)−1)+ 𝑑(𝑥𝑛(𝑘)−1,𝑇𝑥𝑛(𝑘)−1)
)  – 𝜙 (

𝑑2(𝑥𝑚(𝑘)−1,𝑇𝑥𝑚(𝑘)−1)+𝑑2(𝑥𝑛(𝑘)−1,𝑇𝑥𝑛(𝑘)−1)

1+𝑑(𝑥𝑚(𝑘)−1,𝑇𝑥𝑚(𝑘)−1)+ 𝑑(𝑥𝑛(𝑘)−1,𝑇𝑥𝑛(𝑘)−1)
)      

(2.28)  

Letting 𝑘 → ∞,  and using (2.25) and (2.27), we obtain 

     𝜓(𝜖) ≤ 𝜓(𝜖) −  𝜙(𝜖)       (2.29) 

which is a contraction  if   𝜖 > 0. 

This shows that {𝑥𝑛} is a Cauchy sequence and hence is convergent in the complete metric space X.  Let  

 𝑥𝑛 → 𝑧  𝑎𝑠  𝑛 → ∞       (2.30) 

Substituting  𝑥 = 𝑥𝑛−1  and  𝑦 = 𝑧 in (2.4(a)), we obtain 

 𝜓 (𝑑(𝑇𝑥𝑛−1, 𝑇𝑧)) ≤ 𝜓 (
𝑑2(𝑥𝑛−1,𝑇𝑥𝑛−1)+𝑑2(𝑧,𝑇𝑧)

1+𝑑(𝑥𝑛−1,𝑇𝑥𝑛−1)+𝑑(𝑧,𝑇𝑧)
) − 𝜙 (

𝑑2(𝑥𝑛−1,𝑇𝑥𝑛−1)+𝑑2(𝑧,𝑇𝑧)

1+𝑑(𝑥𝑛−1,𝑇𝑥𝑛−1)+𝑑(𝑧,𝑇𝑧)
)   (2.31)  

Letting 𝑛 → ∞  using (2.30)   and continuity of 𝜙 𝑎𝑛𝑑  𝜓  we have 

   𝜓(𝑑(𝑧, 𝑇𝑧)) ≤  𝜓(0) −  𝜙(0)  = 0  

Which implies 𝜓(𝑑(𝑧, 𝑇𝑧)) = 0, that is  

     𝑑(𝑧, 𝑇𝑧) = 0  or   𝑧 = 𝑇𝑧. 

To prove the uniqueness of the fixed point, let us suppose that 𝑧1𝑎𝑛𝑑 𝑧2 are two fixed points of T.  Putting 𝑥 =

𝑧1 𝑎𝑛𝑑 𝑦 = 𝑧2  in (2.4(a)) 

   𝜓 (𝑑(𝑇𝑧1, 𝑇𝑧2)) ≤ 𝜓 (
𝑑2(𝑧1,𝑇𝑧1)+𝑑2(𝑧2,𝑇𝑧2)

1+𝑑(𝑧1,𝑇𝑧1)+𝑑(𝑧2,𝑇𝑧2)
) −  𝜙 (

𝑑2(𝑧1,𝑇𝑧1)+𝑑2(𝑧2,𝑇𝑧2)

1+𝑑(𝑧1,𝑇𝑧1)+𝑑(𝑧2,𝑇𝑧2)
)   

   𝜓 (𝑑(𝑇𝑧1, 𝑇𝑧2))  ≤ 0  

Or equivalently 𝑑(𝑧1, 𝑧2) = 0  that is   𝑧1 =   𝑧2. This proves that the uniqueness of the fixed point. 

Theorem  2.5:  Let (𝑋, 𝑑 )  be a complete metric space and let  𝑇: 𝑋 → 𝑋 be a self mapping satisfying the 

inequality  

  𝜓(𝑑(𝑇𝑥, 𝑇𝑦))  ≤ 𝜓(max{𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝑇𝑥), 𝑑(𝑦, 𝑇𝑦)}) – 𝜙(max{𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝑇𝑥), 𝑑(𝑦, 𝑇𝑦)})   

(2.5(𝑎)) 

where  𝜓, 𝜙 ∶  [0, ∞) →  [0, ∞) are both continuous and monotone nondecreasing functions with 𝜓(𝑡) = 0 =

 𝜙(𝑡) if and only if  𝑡 = 0.  Then T has a unique fixed point. 
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Proof :  For any 𝑥0 ∈ 𝑋, we construct the sequence {𝑥𝑛} by 𝑥𝑛 = 𝑇𝑥𝑛−1, 𝑛 = 1,2, … ..  

Substituting  𝑥 = 𝑥𝑛−1 𝑎𝑛𝑑 𝑦 =  𝑥𝑛    in (2.5(a)), we obtain 

   𝜓(𝑑(𝑇𝑥𝑛−1, 𝑇𝑥𝑛))  ≤ 𝜓(max{𝑑(𝑥𝑛−1, 𝑥𝑛), 𝑑(𝑥𝑛−1, 𝑇𝑥𝑛−1), 𝑑(𝑥𝑛 , 𝑇𝑥𝑛)})    

      – 𝜙(max{𝑑(𝑥𝑛−1, 𝑥𝑛), 𝑑(𝑥𝑛−1, 𝑇𝑥𝑛−1), 𝑑(𝑥𝑛 , 𝑇𝑥𝑛)})    

   𝜓(𝑑(𝑥𝑛, 𝑥𝑛+1))  ≤ 𝜓(max{𝑑(𝑥𝑛−1, 𝑥𝑛), 𝑑(𝑥𝑛−1, 𝑥𝑛), 𝑑(𝑥𝑛 , 𝑥𝑛+1)})   

 – 𝜙(max{𝑑(𝑥𝑛−1, 𝑥𝑛), 𝑑(𝑥𝑛−1, 𝑥𝑛), 𝑑(𝑥𝑛 , 𝑥𝑛+1)})   (2.31) 

Using the monotone property of  𝜓 − function we have 

   𝑑(𝑥𝑛, 𝑥𝑛+1) ≤  max{𝑑(𝑥𝑛−1, 𝑥𝑛), 𝑑(𝑥𝑛−1, 𝑥𝑛), 𝑑(𝑥𝑛, 𝑥𝑛+1)}   

Which implies  

   𝑑(𝑥𝑛, 𝑥𝑛+1) ≤  𝑑(𝑥𝑛−1, 𝑥𝑛)         (2.32) 

It follows that the sequence {𝑑(𝑥𝑛, 𝑥𝑛+1)} is monotone decreasing and consequently there exists 𝑟 ≥ 0  such 

that 

   𝑑(𝑥𝑛, 𝑥𝑛+1) → 𝑟  𝑎𝑠  𝑛 → ∞.         (2.33) 

Letting 𝑛 → ∞  in (2.31)  we obtain  

   𝜓(𝑟)  ≤ 𝜓(𝑟)  – 𝜙(𝑟) ,         (2.34)  

This is a contraction unless   𝑟 = 0.   

Hence  

    𝑑(𝑥𝑛, 𝑥𝑛+1) → 0  𝑎𝑠  𝑛 → ∞.        (2.35) 

We next prove that {𝑥𝑛}  is a Cauchy sequence. If possible, let {𝑥𝑛} be not a Cauchy sequence. Then there exists 

𝜖 > 0  for which we can fixed subsequences {𝑥𝑚(𝑘)} and {𝑥𝑛(𝑘)} of {𝑥𝑛} with 𝑛(𝑘) >  𝑚(𝑘) > 𝑘  such that 

    𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)) ≥ 𝜖.         (2.36)   

Further, corresponding to 𝑚(𝑘),  we can choose 𝑛(𝑘) is such a way that if is the smallest integer with 𝑛(𝑘) >

𝑚(𝑘)  and satisfying (2.36).  Then  

    𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)−1) < 𝜖.       (2.37) 

Then we hgave 

𝜖 ≤  𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)) ≤  𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)−1) +  𝑑(𝑥𝑛(𝑘)−1, 𝑥𝑛(𝑘)) <   𝜖 +  𝑑(𝑥𝑛(𝑘)−1, 𝑥𝑛(𝑘))   (2.38) 

Letting 𝑘 → ∞  and using (2.35), 

 lim
𝑘→ ∞

𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘))  = 𝜖.        (2.39) 

Again, 

  𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)) ≤  𝑑(𝑥𝑚(𝑘), 𝑥𝑚(𝑘)−1) +  𝑑(𝑥𝑚(𝑘)−1, 𝑥𝑛(𝑘)−1) +  𝑑(𝑥𝑛(𝑘)−1, 𝑥𝑛(𝑘))    
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  𝑑(𝑥𝑚(𝑘)−1, 𝑥𝑛(𝑘)−1)  ≤  𝑑(𝑥𝑛(𝑘)−1, 𝑥𝑛(𝑘)) +  𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)) +  𝑑(𝑥𝑚(𝑘), 𝑥𝑚(𝑘)−1)     

(2.40) 

Letting 𝑘 → ∞  in the above two inequalities and using (2.35) and (2.39), we get 

 lim
𝑘→ ∞

𝑑(𝑥𝑚(𝑘)−1, 𝑥𝑛(𝑘)−1)  = 𝜖     (2.41) 

Setting 𝑥 =  𝑥𝑚(𝑘)−1   𝑎𝑛𝑑  𝑦 =   𝑥𝑛(𝑘)−1   in (2.5(a))  and using (2.7) , we obtain  

    𝜓(𝜖) ≤  𝜓 (𝑑(𝑇𝑥𝑚(𝑘)−1, 𝑇𝑥𝑛(𝑘)−1))   

              ≤ 𝜓(max{𝑑(𝑥𝑚(𝑘)−1, 𝑥𝑛(𝑘)−1), 𝑑(𝑥𝑚(𝑘)−1, 𝑇𝑥𝑚(𝑘)−1), 𝑑(𝑥𝑛(𝑘)−1, 𝑇𝑥𝑛(𝑘)−1)})   

      – 𝜙(max{𝑑(𝑥𝑚(𝑘)−1, 𝑥𝑛(𝑘)−1), 𝑑(𝑥𝑚(𝑘)−1, 𝑇𝑥𝑚(𝑘)−1), 𝑑(𝑥𝑛(𝑘)−1, 𝑇𝑥𝑛(𝑘)−1)})      (2.42)  

Letting 𝑘 → ∞,  and using (2.39) and (2.41), we obtain 

   𝜓(𝜖) ≤ 𝜓(𝜖) −  𝜙(𝜖)           (2.43) 

which is a contraction  if   𝜖 > 0. 

This shows that {𝑥𝑛} is a Cauchy sequence and hence is convergent in the complete metric space X.  Let  

 𝑥𝑛 → 𝑧  𝑎𝑠  𝑛 → ∞         (2.44) 

Substituting  𝑥 = 𝑥𝑛−1  and  𝑦 = 𝑧 in (2.5(a)), we obtain 

  𝜓 (𝑑(𝑇𝑥𝑛−1, 𝑇𝑧)) ≤ 𝜓 (max{𝑑(𝑥𝑛−1, 𝑧), 𝑑(𝑥𝑛−1, 𝑇𝑥𝑛−1), 𝑑(𝑧, 𝑇𝑧)})  

    − 𝜙 (max{𝑑(𝑥𝑛−1, 𝑧), 𝑑(𝑥𝑛−1, 𝑇𝑥𝑛−1), 𝑑(𝑧, 𝑇𝑧)})   (2.45)  

Letting 𝑛 → ∞  using (2.44)   and continuity of 𝜙 𝑎𝑛𝑑  𝜓  we have 

   𝜓(𝑑(𝑧, 𝑇𝑧)) ≤  𝜓(0) −  𝜙(0)  = 0  

Which implies 𝜓(𝑑(𝑧, 𝑇𝑧)) = 0, that is  

   𝑑(𝑧, 𝑇𝑧) = 0  or   𝑧 = 𝑇𝑧. 

Next we show that uniqueness of fixed point for this let 𝑧1𝑎𝑛𝑑 𝑧2 be two different fixed points of T that is 𝑧1 ≠

𝑧2 . On taking  𝑧1  in place of  𝑥  𝑎𝑛𝑑 𝑧2 in place of 𝑦  in (2.5(a)) then we get 

 𝜓 (𝑑(𝑇𝑧1, 𝑇𝑧2)) ≤ 𝜓 (max{𝑑(𝑧1, 𝑧2). 𝑑(𝑧1, 𝑇𝑧1). 𝑑(𝑧2, 𝑇𝑧2)}) −  𝜙 (max{𝑑(𝑧1, 𝑧2). 𝑑(𝑧1, 𝑇𝑧1). 𝑑(𝑧2, 𝑇𝑧2)})  

 𝜓 (𝑑(𝑇𝑧1, 𝑇𝑧2))  ≤ 0. 

Which contradiction our hypothesis. So  𝑑(𝑧1, 𝑧2) = 0  that is   𝑧1 =   𝑧2 which  show that the fixed point is 

unique. 

Conclusion:  In this paper we prove a new type contractive condition which generalized previously known 

results in this direction.  We also introduced the concept of symmetric rational contractive condition by using 

the notion of altering distance function in metric space. 

Acknowledgement: We are heartily thankful to referee for his valuable comments and suggestion to improve 

the quality of this paper.  
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