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Introduction and Preliminaries

In past few decades study of fixed point theory is one of the most interesting fields to researchers. In this
direction Banach contraction mapping principle is one of the most interesting results which states as follows:-

Let (X,d) be a complete metric space andT : X - X . Then T is said to be contraction mapping if for all
x,y €X,

d(Tx,Ty) < kd(x,y) (1.1)
where 0 < k < 1.

It is easy to see that the contraction mapping principle, any mapping T satisfying (1.1) will have a unique
fixed point.

Number of mathematicians generalized the above principle. Boyd and Wong!!l proved that the
constant k in (1.1) can be replaced by the use of upper semi continuous function. Suzuki'®! has proved a
generalization of the same principle which characterizes metric completeness. The contraction principle has also
been extended to probabilistic metric space [5].

One of the most interesting generalization was presented by Khan et al.l®| which addressed a new
category of fixed point problems by using control function which they called an altering distance function. In fact
Khan et al.3! presented following definition of altering distance function.
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Definition 1.1: A function y: [0, ) — [0, o) is called an altering distance function if the following properties are
satisfied:

i ¥(0) =0

ii. Y is continuous and monotonically non decreasing.
In Khan et al.3! proved the following fixed point result.

Theorem 1.2: Let (X, d) is a complete metric space, lety be an altering distance function, and letT:X — X be a
self~-mapping which satisfies the following inequality:

Y(d(Tx Ty)) < cp(d(x,y)) (12)
forallx,y € X and for some0 < c < 1. ThenT has a unique fixed point.

After the publication of Khan et al.®] work there is lot of work done by using this concept. Some of
works utilizing the concept of altering distance function are noted in [4 — 14]. [n|[9], 2-variable and in [10] 3-
variable altering distance functions have been introduced as generalizations of the concept of altering distance
function. It has also been extended in the context if multivalued [11] and fuzzy mappings|[12]. The concept of
altering distance function has also been introduced in Menger spaces [13].

Alber and Guerre — Delabriere!® gave an another generalization of the contraction principle in
Hilbert spaces. Rhoades [17] has shown that the result which Alber and Guerre- Delabriere have been proved
in[5] is also valid in complete metric spaces. Rhoades gave the following definition of contraction
principle,

Definition 1.3: A mapping T: X — X, where (X, d) is a metric space, is said to be weakly contractive if
d(Tx,Ty) < d(x,y) — ¢(dx,y)) (1.3)

wherex,y € X and ¢:[0,0) - [0,) is a continuous and nondecreasing function such that ¢(t) = 0 if and
onlyif t =0.

It should be noted that if we take ¢(t) = kt where 0 < k < 1, in (1.3) then we get (1.1).
Also following theorem is the main results ofRhoades™*!.

Theorem 1.4: IfT : X —» X is a weakly contractive mapping, where (X, d) is a complete metric space, then T
has a unique fixed point.

In fact Alber and Guerre- Delabriere assumed an additional condition on ¢ which is tllrrgo ¢(t) = . But
Rhoades"™ obtained the result noted in Theorem 1.4 without using this particular assumption.

It may be observed that though the function ¢ has been defined in the same way as the altering

distance function, the way it has been used in Theorem 1.4 is completely different from the use of altering
distance function.

The purpose of this paper is to introduce a new type contraction principle which is a generalization of
Banach contraction principle which includes the generalizations noted in Theorem 1.2 and 1.4 .

IJCRT2204021 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | al73


http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 4 April 2022 | ISSN: 2320-2882

Main Results
Our main investigated result of this paper is as follows,

Theorem 2.1: Let (X,d ) be a complete metric space and let T: X — X be a self mapping satistying the
inequality

w(d(Tx, Ty)) <y ((d(x, y).d(x,Tx).d(y, Ty))g) -¢ ((d(x, v).d(x,Tx).d(y, Ty))g) (2.1(a))

where Y, ¢ : [0,0) = [0,0) are both continuous and monotone nondecreasing functions with{(t) = 0 =
¢(t) ifand only if t = 0. Then T has a unique fixed point.

Proof: Foranyx, € X, we construct the sequence{x,} byx, = Tx,_1, n =12, .....

Substituting x = x,,_, andy = x,, in (2.1(a)), we obtain

P(ATx00, %)) < ((ACtn1,20). ACopo1, T dCin, T))? )
- d) ((d(xn—l' xn)- d(xn—l' Txn—l)- d(xn: Txn))g)
(Gt x12)) <P ((ACn1,30). ACtn1,20). Ao Xns1))

-6 (@Gt 2). A a2 e 20 ))?) (22)
Using the monotone property of W — function we have

d?(xn, Xn41) < d*(Xn_q, %)
Which implies

d(xn, Xp41) < d(p—1, %) (2.3)

It follows that the sequence {d(x,, X,+1)} Is monotone decreasing and consequently there existsr > 0 such
that

d(xy, Xpe1) 2T as N > o,

24

Lettingn — oo in (2.2) we obtain

Y(r) <yY((r) -¢((),
(2.5

This is a contraction unless r = 0.
Hence

d(xy, Xp41) 2 0 as n > oo,

(2.6)

We next prove that{x,} is a Cauchy sequence. If possible, let{x, } be not a Cauchy sequence. Then there exists
€ > 0 for which we can fixed subsequences {xp, )} and{xn} of {x,} withn(k) > m(k) > k such that
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d(xm(k),xn(k)) = €. 2.7)

Further, corresponding tom(k), we can choosen(k) is such a way that if is the smallest integer withn(k) >
m(k) and satistying (2.7). Then

d(Xm(y Xn(-1) < €. (2.8)
Then we have

€ < d(Xm@y %) S A(Xmy Xngr-1) + d(Xng)-1 %n) < € + d(Xn@-1 Xnw)
(2.9)

Lettingk — o and using (2.6),

lim d(xm(k),xn(k)) = €.

k— oo

(2.10)
Again,
d(%m oy Xn(i) < d(miy Xmii-1) + d(%m@-1 Xnii-1) + d(%ni0-1 Xn(0)
d(Xmao-1 %n0o-1) < A(Xn@)-1Xnw) + d(Xmay %) + d(Xmy Xma-1) (2.11)
Lettingk — oo in the above two inequalities and using (2.6) and (2.10), we get
’}eréo d(xm(k)_l,xn(k)_l) =€ (2.12)

Settingx = Xmoy-1 and y = Xpqo-1 in(2.1(a)) and using (2.7), we obtain

IGER" (d(Txm(k)—llTxn(k)—l))

1
<y <(d(xm(k)—1J Xn(i0-1)- d(Xmaey=1> TXmay-1)-d (X0 -1» Txn(k)—l))3>

1
-¢ ((d(xm(k)—l' Xn(i0-1)- d(Xme)-1, TXmi)1)- A(Xn)-1, Txn(k)—l))3>
(213)

Lettingk — oo, and using (2.10) and (2.12), we obtain

Y(e) <yP(e) — ¢(e)
(2.14)

which is a contraction if € > 0.
This shows that{x,} is a Cauchy sequence and hence is convergent in the complete metric space X. Let

Xp—>Zas n— oo

(2.15)

Substituting x = x,_, and y = z in (2.1(a)), we obtain

W (d(Txp_1,T2) < ¥ ((d(xn_l,z). A1, Txn_). d (2, Tz))i)

IJCRT2204021 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | al75


http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 4 April 2022 | ISSN: 2320-2882

—¢ ((d(xn_l,z).d(xn_l,Txn_l). d(z, Tz))é) (2.16)
Lettingn — oo using (2.15) and continuity of p and Y we have
Y(d(z,T2)) < $(0) — ¢(0) =0
Which impliesy(d(z,Tz)) = 0, that is
d(z,Tz) =0 or z=Tz.

To prove the uniqueness of the fixed point, let us suppose thatz,and z, are two fixed points of T. Puttingx =
ziandy =z, in (2.1(a))

¥ (A2, 77)) < ((d(20,2,). A1, T2). Az, T2,))7 ) -
(0] ((d(Zp 73).d(21,Tz,).d(z,, TZz))g)

¥ (d(Tzy,Tz)) <0
Or equivalently d(z,,z,) = 0 thatis z; = z,. This proves that the uniqueness of the fixed point.
Corollary 2.2: Let (X,d ) be a complete metric space and let T: X — X be a self mapping satisfying the

inequality

lp(d(Tx, Ty)) <ky ((d(x, v).d(x,Tx).d(y, Ty))g) (Z.Z(a))

where 1 : [0,00) - [0, ) is continuous and monotone nondecreasing functions withy(t) =0 ifand only if
t=0and 0 < k <1. Which shows that T has unique fixed point in X.

Proof : If we particularly taked(t) = (1 —k)yP(t) Vt >0 where0 <k <1, in Theorem 2.1(a) then we
obtain the result.

Corollary 2.3: Let (X,d ) be a complete metric space and let T: X — X be a self mapping satistying the
inequality

d(Tx,Ty) <k (d(x, v).d(x,Tx).d(y, Ty))% (2.3((1))
where 0 < k < 1. Then T has a unique fixed point.
Proof: If we particularly take(t) =t YVt > 0 , in Corollary 2.2 then we obtain the result.
Now we give another fixed point theorem satistying rational contractive condition.

Theorem 2.4: Let (X,d ) be a complete metric space and let T:X — X be a self mapping satistying the
inequality

d?(x,Tx)+ d?(y,Ty) d?(x,Tx)+ d?>(y,Ty)
l/)(d(Tx, Ty)) =Y (1+ d(x,Tx) + d(y,Ty)) - (1+ d(x,Tx) + d(y,Ty)) (2.4-((1))

where Y, ¢ : [0,0) = [0,0) are both continuous and monotone nondecreasing functions with{(t) < kt for
0<k<1andy(t) =0= ¢(t) ifandonlyif t = 0. Then T has a unique fixed point.

Proof: Foranyx, € X, we construct the sequence{x,} byx, = Tx,_1, n=12,.....
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Substituting x = x,,_1 andy = x,, in (2.4(a)), we obtain

l/)(d(Txn_l, Txn)) < ll) (dz (xn—l:Txn—l)"'dz(xn'Txn)) _ ¢ (dz (xn—l:Txn—l)"’dz(xn:Txn))

1+d(xpn—1,Txn—1)+d(xnTxyn) 1+d(xpn—1,Txn—1)+d(xn,Txyn)

2 2 2 2
l/)(d(xn, xn+1)) <y (d (Xn-1%n)+d (xn,xn+1)) —¢ (d (Xn-1xn)+d (xn:xn+1)) (2.16)

1+d(xp—1,%0)+d(Xxn,Xn+1) 1+d(xp-1,%Xn)+d(XnXn+1)

Using the monotone property of ) — function we have

d(Xn, Xn41) < d(xn 1, %n) (2.17)
Similarly we have

d(tn-1,%n) < 775 dCno1, %n—2) (218)
Processing the same way we have

d(xp, Xp41) < —= d(xg,x1)

- k)”

It follows that the sequence {d(x,, X,+1)} Is monotone decreasing and consequently there existsr > 0 such
that

d(Xp, Xps1) 27 as N > oo, (2.19)
Lettingn — oo in (2.16) we obtain

Y(r) <yY@r) -¢(@), (2.20)
This is a contraction unless r = 0.
Hence

d(Xp, Xps1) 2 0 as n - . (2.21)

We next prove that{x,} is a Cauchy sequence. If possible, let{x, } be not a Cauchy sequence. Then there exists
€ > 0 for which we can fixed subsequences {xp, )} and{x,} of {x,} withn(k) > m(k) > k such that

d(xm(k). xn(k)) = €. (2.22)

Further, corresponding tom(k), we can choosen(k) is such a way that if is the smallest integer withn(k) >
m(k) and satistying (2.22). Then

d(xm(k),xn(k)_l) <E€. 2.23)
Then we hgave

€ < d(Xm@y ¥nw) < Ay ¥nw-1) + A(Xng-1 Xnw) < € + d(Xnao-1 *nw))
(2.24)

Lettingk — oo and using (2.21),

lim d(xm(k),xn(k)) = €. (2.25)

k- oo

Again,

IJCRT2204021 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | al77


http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 4 April 2022 | ISSN: 2320-2882

d(Xm@y X)) < A(Xmy Xmao-1) + A(Xmo-1 *¥n@-1) + A(Fn-1 ¥nao))
d(Xm@)-1 Xnw-1) < A(Xno-1 %) + d(Fmu Xn) + d(Xmy Xmuo-1) (2.26)

Lettingk — oo in the above two inequalities and using (2.22) and (2.25), we get
Jim d(Xm -1 Xn(i)-1) = € (2.27)
Settingx = Xmoy-1 and y = Xpqo-1 in (2.4(a)) and using (2.23), we obtain

(€) < ¥ (A(Tma-1, T -1) )

<y ( a2 (Xm@ -1 xm()-1) +d* (xn(k)—lJTxn(k)—1)> ¢ (d2(xm(k)—vTxm(k)—l)+d2(xn(k>—1rTxn(k)—1) )
= T \1+d(Xm) -1, TXm(k)-1)+ Ad(Xng)-1.T*n(k)-1) 1+d(Xm(k)-1.TXm(k)-1)+ A(Xn(k)=1.Txn(k)-1)
(2.28)
Lettingk — o, and using (2.25) and (2.27), we obtain
Y(e) <y(e) — ¢(e) (2.29)
which is a contraction if € > 0.
This shows that{x,} is a Cauchy sequence and hence is convergent in the complete metric space X. Let

X, = Z as n— o (2.30)

Substituting x = x,_4 and y = z in (2.4(a)), we obtain

b (d(Txn_l,Tz)) < (dz(xn_l,Txn_1)+d2(z,Tz)) — ¢ (dz(xn_l,Txn_1)+d2(z,Tz)) (2:31)

1+d(Xn—1,T%n_1)+d(2,T2) 14+d (X1, T2y—1)+d(2,TZ)
Lettingn — oo using (2.30) and continuity of ¢ and Y we have
Y(d(zT2)) < p(0) — ¢(0) =0
Which imp]iesw(d(z, TZ)) = 0, that is
d(z,Tz) =0 or z=Tz.

To prove the uniqueness of the fixed point, let us suppose thatz,and z, are two fixed points of T. Puttingx =
ziandy = z, in (2.4(a))

dz(zl,TZ]_)+d2(Zz,TZZ) _ dz(zl,T21)+d2(Zz,TZZ)
lp (d(TZI’ TZZ)) S lp (1+d(zl,T21)+d(22,TZZ)) ¢ (1+d(21,T21)+d(22,TZZ))

ll) (d(TZl,TZZ)) <0
Orequivalentlyd(z,,z,) = 0 thatis z, = z,. This proves that the uniqueness of the fixed point.

Theorem 2.5: Let(X,d ) be a complete metric space and let T:X — X be a self mapping satisfying the
inequality

Y(d(Tx,Ty)) <p(max{d(x,y),d(x,Tx),d(y, Ty)}) - p(max{d(x,y),d(x, Tx),d(y,Ty)})
(2.5(a))

where Y, ¢ : [0,0) — [0,0) are both continuous and monotone nondecreasing functions withy(t) = 0 =
¢(t) ifand only if t = 0. Then T has a unique fixed point.
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Proof: Foranyx, € X, we construct the sequence{x,} byx, = Tx,_1, n =12, .....
Substituting x = x,,_, andy = x, in (2.5(a)), we obtain
Y(d(Txn-1,Txn)) < p(max{d(xn_1, %), d (X1, TXp_1), d(%y, Txp)})
- ¢ (max{d (xp—1, %), d(n—1, TXn-1), d (%, Tx)})
Y(d(xn, xn11)) < (max{d (-1, %), d(Xn—1, %), d (%n, Xn41)})
- p(max{d(xp_1, Xn), d(Xn-1, %n), d(Xn, Xn41)}) (2.31)
Using the monotone property of \ — function we have
d(Xn, Xn41) < max{d(Xp—1, %), d(Xn-1, %), d(Xn, Xn+1)}
Which implies
d(xp, Xne1) < d(Xp_1,xp) (2.32)

It follows that the sequence {d(x,, X,+1)} Is monotone decreasing and consequently there existsr > 0 such
that

d(Xp, Xps1) 27 as N — oo, (2.33)
Lettingn — oo in (2.31) we obtain
Y(r) <y(r) -¢(@), (2.34)
This is a contraction unless r = 0.
Hence
d(xy, Xp41) 2 0 as n > oo, (2.35)

We next prove that{x,} isa Cauchy sequence. If possible, let{x,} be not a Cauchy sequence. Then there exists
€ > 0 for which we can fixed subsequences {Xm, )} and{x,} of{x,} withn(k) > m(k) > k such that

d(xm(k),xn(k)) = €. (2.36)

Further, corresponding tom(k), we can choosen(k) is such a way that if is the smallest integer withn(k) >
m(k) and satistying (2.36). Then

d(xm(k),xn(k)_l) <e. (2.37)
Then we hgave
€ < d(xm@y Xngo) < d(Xma Xno-1) + d(Xno-1%m0) < € + d(Xn-1 %) (2.38)
Lettingk — oo and using (2.35),

lim d(xm(k),xn(k)) =e€. 2.39)

k— oo
Again,

d(Xm@y %)) S 4(Xm Xmao-1) + A(Xm@ -1 ¥n@w-1) + d(Fno-1 ¥nao))
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A(%m@0-1¥n-1) < d(Fnw -1 ¥nw) + d(Xmy ¥nw) + d(Xmy ¥m@)-1)
(2.40)

Lettingk — oo in the above two inequalities and using (2.35) and (2.39), we get
Jim d(Xmo -1 Xn(io-1) = € (241)

Settingx = Xmoy-1 and y = Xpqo-1 In(2.5(a)) and using (2.7), we obtain

Ye)< ¢ (d(Txm(k)—l:Txn(k)—l))
< Y(max{d (i) -1, n(0-1), d (Xmiio -1 Txmi -1)> 4 (Xn iy -1 TAn-1)})
- ¢(max{d (xm)-1, Xng0-1), d(m@a)-1, T¥m@y-1), d (-1, Ty -1)}) ~ (242)
Lettingk — oo, and using (2.39) and (2.41), we obtain
Y(e) <p(e) — ¢(e) (243)
which is a contraction if € > 0.
This shows that{x,} is a Cauchy sequence and hence is convergent in the complete metric space X. Let
X, 2 Z as n— o (2.44)
Substituting x = x,_1 and y = z in (2.5(a)), we obtain
¥ (d(Txn-1,T2)) < o (max{d (xp—1,2), d(Xn_1, T2n_1),d(2,T2)})
— ¢ (max{d (xp—1,2), d(xp—1, Txn—1),d(2,T2)}) (245)
Lettingn — oo using (2.44) and continuity of ¢ and Y we have
¥(d(z,T2)) < %(0) — ¢(0) =0
Which imp]iesv,b(d(z, T Z)) = 0, that is
d(z,Tz) =0 or z=Tz.

Next we show that uniqueness of fixed point for this let z;and z, be two different fixed points of T that is z; +
Z, . On taking z, in place of x and z, in place ofy in (2.5(a)) then we get

Y (d(TZI' TZZ)) <Y (max{d(z,,2;).d(z1,Tz,).d(2,,Tz;)}) — ¢ (max{d(zy,2;).d(z1,Tz,).d(z,,Tz;)})
¥ (d(Tzy,Tzy)) <0.

Which contradiction our hypothesis. So d(zi,z;) =0 thatis z, = z, which show that the fixed point is
unique.

Conclusion: In this paper we prove a new type contractive condition which generalized previously known
results in this direction. We also introduced the concept of symmetric rational contractive condition by using
the notion of altering distance function in metric space.

Acknowledgement: We are heartily thankful to referee for his valuable comments and suggestion to improve

the quality of this paper.

IJCRT2204021 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | al80


http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 4 April 2022 | ISSN: 2320-2882

10.

11.

12.

13.

14.

References

D.W. Boyd and J. S. W. Wong, “On nonlinear contractions,” Proceedings of the American Mathematical
Society, vol. 20, no. 2, pp. 458-464, 1969.

T. Suzuki, “A generalized Banach contraction principle that characterizes metric completeness,”
Proceedings of the American Mathematical Society, vol. 136, no. 5, pp. 1861-1869, 2008.

M. S. Khan,M. Swaleh, and S. Sessa, “Fixed point theorems by altering distances between the points,”
Bulletin of the Australian Mathematical Society, vol. 30, no. 1, pp. 1-9, 1984.

Ya. L. Alber and S. Guerre-Delabriere, “Principle of weakly contractive maps in Hilbert spaces,” in New
Results in Operator Theory and Its Applications, I. Gohberg and Y. Lyubich, Eds., vol. 98 of Operator
Theory: Advances and Applications, pp. 7-22, Birkh"auser, Basel, Switzerland, 1997.

G. V. R. Babuy, B. Lalitha, and M. L. Sandhya, “Common fixed point theorems involving two generalized
altering distance functions in four variables,” Proceedings of the Jangjeon Mathematical Society, vol.
10, no. 1, pp. 83-93, 2007.

S. V. R. Naidu, “Some fixed point theorems in metric spaces by altering distances,” Czechoslovak
Mathematical Journal, vol. 53, no. 1, pp. 205-212, 2003.

K. P. R. Sastry and G. V. R. Babu, “Some fixed point theorems by altering distances between the points,”
Indian Journal of Pure and Applied Mathematics, vol. 30, no. 6, pp. 641-647, 1999.

K. P. R. Sastry, S. V. R. Naidu, G. V. R. Babu, and G. A. Naidu, “Generalization of common fixed point
theorems for weakly commuting map by altering distances,” Tamkang Journal of Mathematics, vol. 31,
no. 3, pp- 243-250, 2000.

B. S. Choudhury and P. N. Dutta, “A unified fixed point result in metric spaces involving a two variable
function,” Filomat, no. 14, pp. 43-48, 2000.

B. S. Choudhury, “A common unique fixed point result inmetric spaces involving generalised altering
distances,” Mathematical Communications, vol. 10, no. 2, pp. 105-110, 2005.

B. S. Choudhury and A. Upadhyay, “On unique common fixed point for a sequence of multi-valued
mappings on metric spaces,” Bulletin of Pure & Applied Sciences. Section E, vol. 19, no. 2, pp. 529-533,
2000.

B. S. Choudhury and P. N. Dutta, “Common fixed points for fuzzy mappings using generalized altering
distances,” Soochow Journal of Mathematics, vol. 31, no. 1, pp. 71-81, 2005.

B. S. Choudhury and K. Das, “A new contraction principle in Menger Spaces,” Acta Mathematica Sinica,
vol. 24, no. 8, pp. 1379-1386, 2008.

B. E. Rhoades, “Some theorems on weakly contractive maps,” Nonlinear Analysis: Theory, Methods &
Applications, vol. 47, no. 4, pp. 2683-2693, 2001.

IJCRT2204021 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | al81


http://www.ijcrt.org/

